Mathématique classe de 3e by Paul Biancamara, Édouard Dehame

By Paul Biancamara, Édouard Dehame

Desk des matières :

Chapitre 1. Opérations sur les nombres réels

    1. Rappel sur les opérations internes
    2. Axiomes des opérations dans ℝ
    3. Rôle du zéro pour los angeles multiplication — Groupe commutatif (ℝ*, ×)
    4. Propriétés comparées de l’addition et de l. a. multiplication dans ℝ
    5. program aux équations du most appropriate degré à une inconnue
    6. Puissances d’un nombre réel (révision)

Chapitre 2. l. a. relation d’ordre dans ℝ

    1. Rappel sur les kin d’ordre
    2. Axiomes de l’ordre dans ℝ
    3. Réels positifs — Réels négatifs
    4. Signe d’un réel non nul
    5. Autres propriétés reliant l’ordre à l’addition et à l. a. multiplication dans ℝ
    6. software aux inéquations du ideal degré à une inconnue

Chapitre three. Calculs sur les quotients de réels. Nombres rationnels

    1. Différentes écritures d’un réel sous forme de quotient
    2. Addition des réels mis sous forme de quotients
    3. Multiplication des réels mis sous forme de quotients
    4. Nombres rationnels
    5. Fractions irréductibles
    6. Exercices sur les nombres rationnels

Chapitre four. Valeur absolue, distance. Calculs approchés

    1. Valeur absolue et distance dans ℝ (révision)
    2. Exercices sur los angeles valeur absolue et los angeles distance dans ℝ
    3. Valeurs approchées
    4. Approximation d’un réel par des décimaux
    5. Calculs approchés
    6. Tables de valeurs numériques

Chapitre five. Racines carrées

    1. Comparaison des carrés de deux réels positifs
    2. Résolution dans ℝ₊ de l’équation x² = a (a réel positif donné)
    3. Propriétés des racines carrées dans ℝ₊; calculs sur les radicaux
    4. Calculs approchés de racines carrées dans ℝ₊
    5. Résolution dans ℝ de l’équation x² = a (a réel donné)

Chapitre 6. Représentation graphique des fonctions numériques

    1. Vecteurs directeurs d’une droite
    2. Coordonnées d’un aspect dans un repère du plan
    3. Généralités sur les fonctions
    4. Représentation graphique des fonctions numériques d’une variable réelle

Chapitre 7. Fonctions linéaires

    1. Exemples et définition
    2. Nombres proportionnels
    3. Propriétés des fonctions linéaires
    4. Représentation graphique des fonctions linéaires

Chapitre eight. Fonctions affines

    1. Définition et exemples
    2. Propriétés des fonctions affines
    3. Représentation graphique des fonctions affines
    4. Étude du signe de ax + b suivant les valeurs de x
    5. Exemples de fonctions affines par intervalles

Chapitre nine. Fonctions polynômes

    1. Rappel de définitions
    2. Formes réduites, coefficients, degré
    3. Opérations sur les polynômes
    4. Factorisation des polynômes
    5. purposes de los angeles factorisation

Chapitre 10. Fonctions rationnelles

    1. Définition
    2. Exemple d’étude d’une fonction rationnelle
    3. Exemples d’opérations sur des fonctions rationnelles

Chapitre eleven. Équations et inéquations à deux inconnues réelles

    1. Fonctions numériques de deux variables réelles
    2. Équations du most effective degré à deux inconnues réelles
    3. Inéquations du leading degré à deux inconnues réelles
    4. Systèmes de deux équations du most effective degré à deux inconnues
    5. Autres problèmes relatifs à un couple d’inconnues réelles

Chapitre 12. Problèmes

    1. Exemples de problèmes concrets
    2. Généralités sur les problèmes concrets
    3. Exemples de problèmes mathématiques
    4. Un exemple de problème d’optimisation
    5. software de l. a. mathématique à l’étude du monde physique

Chapitre thirteen. Orthogonalité des droites du plan

    1. Droites physiques orthogonales
    2. instructions orthogonales
    3. Orthogonalité des droites du plan
    4. Projection orthogonale
    5. Première forme du théorème de Pythagore

Chapitre 14. Distance du plan euclidien

    1. Rappel et compléments sur los angeles distance associée à une droite graduée
    2. Distance du plan euclidien
    3. Caractérisation de l’alignement de trois points
    4. Norme d’un vecteur
    5. Théorème de Pythagore (deuxième forme)
    6. Distance d’un element à une droite
    7. idea de repère orthonormé et calcul de los angeles distance de deux points

Chapitre 15. Bases orthonormées. Médiatrice. Cercle

    1. development de bases orthonormées
    2. Médiatrice
    3. Le cercle
    4. Positions family members d’un cercle et d’une droite
    5. Intersection d’une droite et d’un disque fermé
    6. development de cercles
    7. Hauteurs d’un triangle

Chapitre sixteen. Isométries du plan euclidien

    1. Translations et symétries centrales du plan euclidien
    2. Isométries du plan euclidien
    3. photographs par une isométrie de los angeles réunion et de l’intersection de deux events du plan
    4. Propriétés de l’isométrie
    5. photo d’une droite par une isométrie
    6. Détermination d’isométries à l’aide de repères orthonormés
    7. pictures d’un demi-plan et d’un cercle par une isométrie

Chapitre 17. l. a. symétrie orthogonale et le groupe des isométries

    1. Isométries admettant deux issues fixes distincts
    2. Composée d’isométries particulières
    3. Le groupe des isométries
    4. Détermination d’une isométrie par l’image qu’elle donne d’un triangle
    5. Décomposition d’une isométrie en symétries orthogonales

Chapitre 18. attitude géométrique

    1. Invariance du rapport de projection orthogonale par isométrie
    2. perspective géométrique
    3. Bissectrice d’un couple de demi-droites de même origine
    4. Symétries orthogonales échangeant deux droites
    5. Le rectangle

Chapitre 19. Arcs de cercle. Mesure des arcs. Écart angulaire

    1. Arcs de cercle
    2. Mesure des arcs de cercle
    3. Écart angulaire
    4. Somme des écarts des angles géométriques d’un triangle

Chapitre 20. Éléments de trigonométrie

    1. Étude d’une relation entre un demi-cercle et [0, K]
    2. Les fonctions cosinus, sinus et tangente
    3. kinfolk trigonométriques dans le triangle rectangle
    4. utilization des tables pour le calcul d’un cosinus, d’un sinus ou d’une tangente
    5. Exercices résolus

Show description

Read Online or Download Mathématique classe de 3e PDF

Similar elementary books

Polynomial root-finding and polynomiography

This booklet deals attention-grabbing and sleek views into the speculation and perform of the ancient topic of polynomial root-finding, rejuvenating the sphere through polynomiography, an artistic and novel desktop visualization that renders mind-blowing photos of a polynomial equation. Polynomiography won't simply pave the way in which for brand new functions of polynomials in technology and arithmetic, but additionally in artwork and schooling.

Evolution: A Beginner's Guide (Beginner's Guides (Oneworld))

Protecting every thing from fossilized dinosaurs to clever apes, this is often an available advisor to 1 of crucial clinical theories of all time. Burt Guttman assumes no previous clinical wisdom at the a part of the reader, and explains all of the key rules and ideas, together with typical choice, genetics and the evolution of animal habit, in a full of life and informative manner.

Mathématiques 1re S et E

Desk des matières :

Chapitre 1. L’outil vectoriel et analytique
    I. Introduction
    II. Le plan vectoriel (rappels)
    III. Les liaisons « plan ponctuel-plan vectoriel »
    IV. L’outil analytique
    V. Compléments
    Exercices

Chapitre 2. L’outil des transformations
    I. Introduction
    II. variations usuelles
    III. motion sur les configurations élémentaires
    IV. ameliorations associant une determine donnée à une determine donnée
    V. Composition de transformations
    VI. Compléments
    Exercices

Chapitre three. Les angles
    I. Introduction
    II. attitude d’un couple de vecteurs
    III. L’addition des angles
    IV. Propriétés géométriques
    V. Angles et cercles
    VI. Compléments
    Exercices

Chapitre four. Le produit scalaire
    I. Introduction
    II. Produit scalaire de deux vecteurs (rappel)
    III. Produit scalaire en géométrie analytique
    IV. Orthogonalité et cocyclicité
    V. Produit scalaire et lignes de niveau
    VI. Compléments
    Exercices

Chapitre five. Trigonométrie et kinfolk métriques dans le triangle
    I. Introduction
    II. Cosinus et sinus (rappels)
    III. Cosinus et produit scalaire ; sinus et déterminant
    IV. Trigonométrie
    V. kinfolk métriques dans le triangle
    VI. Compléments
    Trigonométrie (formulaire récapitulatif)
    Exercices

Chapitre 6. Rotations et isométries fixant un aspect donné
    I. advent (quart de tour)
    II. Rotation de centre O et d’angle α
    III. Rotation : théorèmes de composition et propriétés géométriques
    IV. Isométries fixant un aspect donné
    V. Compléments
    Exercices

Chapitre 7. Le calcul vectoriel dans l’espace
    I. Introduction
    II. L’espace vectoriel E
    III. Droites et plans : repères et vecteurs directeurs
    IV. Éléments de géométrie analytique dans l’espace
    V. Compléments
    Exercices

Chapitre eight. Le produit scalaire dans l’espace
    I. Introduction
    II. Produit scalaire dans E
    III. purposes géométriques du produit scalaire
    IV. Produit scalaire et géométrie analytique
    V. Compléments
    Exercices

Chapitre nine. l. a. sphère
    I. Introduction
    II. los angeles sphère : définition et premières propriétés
    III. part d’une sphère
    IV. Détermination d’une sphère
    V. Surfaces de révolution
    VI. Compléments
    Exercices

Chapitre 10. Statistiques
    I. Introduction
    II. Les caractéristiques de position
    III. Les caractéristiques de dispersion
    IV. Compléments
    Exercices

Additional info for Mathématique classe de 3e

Sample text

4 shows that solving equations in Z,, may be quite different from solving equations in 7L. A quadratic equation in 7L has at most two solutions, whereas the quadratic equation x1 ffi [5]0x = [OJ has four solutions in Z6• • Exercises A. I. Write out the addition and multiplication tables for (a) (b) � Z2 (c) 7L7 (d) Z-12 In Exercises 2--8, solve the equation. 2. _ .. eMmog-- .. _:ligl:U�:MpiNit. 3 3. x2 4. ls x4 =[lJ in Zs 5. x2 EB [3J 0 x®[2J = [OJ in Zt, 6. x2 EB [SJ 0 x = [OJin £9 7. x3 EB x2® x®[lJ =[OJ in Zs 8.

A). ] 31. If p is a positive prime, prove that Vfi is irrational. ] 32. (Euclid ) Prove that there are infinitely many primes. [Hint: Use proof by contradiction (Appendix A) . Assume there are only finitely many primes p1, p2, Pk• and reach a contradiction by showing that the number , Pk·l p1p2 Pk + 1 is not divisible by any of Pi. p2, 33. Let p > 1. If 2P - 1 is prime, prove that p is prime. ] • • • · , • • • · • Note: The converse is false by Exercise 2(b). C. 34. Prove or disprove: If n is an integer and n > 2, then there exists a prime p such that n

A2, , an are integers, not all zero, then their greatest common divisor (gcd) is the largest integer d such that d I a1for every i. Prove that there exist integers u1 such that d = a1u1 + a2u2 + + anu,.. [Hint: Adapt the proof of Theorem 1. ] • • • · • · 31. The least common multiple (lcm) of nonzero integers a1, � , ak is the smallest positive integer m such that a1lm for i = 1, 2, , k and is denoted [a1> � , ak1. • • • • ... •• • (a) • Find each of the following: [6, 10], [4, 5, 6, 10], (20, 42], and [2, 3, 14, 36, 42].

Download PDF sample

Rated 4.55 of 5 – based on 22 votes